

Testing Subgroup Workshop on Critical Property Needs

Tim Armstrong September, 2007

Presented at AMSE/PWG Joint Meeting

Participants

Kevin Klug, David Moyer - CTC

Paul Bakke - DOE

David McColskey, Richard Ricker - NIST

Zhili Feng, Steve Pawel, Govindarajan

Muralidharan - ORNL

Brian Somerday - SNL

Andrew Duncan - SRNL

Petros Safronis - U. Illinois

Objectives

Develop an action plan that:

- details the necessary tests to measure and compare the physical properties of metallic materials relevant to high pressure hydrogen service,
- prioritizes these tests based on need,
- determines the standard test procedure and range of critical variables all participants will use,
- selects the initial materials for testing, and
- establishes a round robin test procedure for one or more properties to assure all participants are obtaining similar results.

Critical Properties

- Fatigue Crack Growth
- Critical (K_{ic}) and Integral Fracture (J_{ic}) Toughness and Tearing Modulus
- Fatigue (∆K_{th})
- Constrained Fracture Mechanics
- K Threshold
- Time Dependant Rate of Change of Crack Length
- Permeation (for solubility and diffusivity)
- Surface exchange kinetics
- Thermal Desorption Spectroscopy
- Hydrogen Concentration Analysis
- Residual Stress
- Component Testing
- Burst Test
- NACE Hydrogen Induced Cracking (HIC) Testing
- In-situ Neutron Analysis
- Tensile testing/Notched Tensile Testing
- Fracture Mechanisms/Modeling

Critical Properties-Ranked

- Fatigue Crack Growth
- Critical (K_{ic}) and Integral Fracture (J_{ic}) Toughness and Tearing Modulus
- Permeation
- K Threshold
- Tensile testing/Notched Tensile Testing
- Fatigue (∆K_{th})
- Surface exchange kinetics
- Hydrogen Concentration Analysis
- Constrained Fracture Mechanics
- Thermal Desorption Spectroscopy
- Burst Test
- Time Dependant Rate of Change of Crack Length
- Residual Stress

Critical Test, Standard Test Method and Test Conditions

Property	Test	Conditions
Fatigue Crack Growth	ASTM 647	1 Hz; R ratio TBD
K _{ic} & J _{ic}	E1820	<3x10 ⁻⁴ mm/sec
Permeation	Gas Flux	-40 to 300°C;
	Measurement	Up to 10 ksi
K Threshold	E1681	TBD
Tensile Test	E8 (smooth), A370,	10 ⁻⁶ sec (smooth),
(smooth & notched)	E602	10 ⁻³ sec (fixed notch)
Fatigue	E647	1 Hz, R Ratio TBD
Surface Exchange	TBD	-40 to 300°C;
Kinetics		Up to 10 ksi

Critical Test, Standard Test Method and Test Conditions

Property	Test	Conditions
Hydrogen Concentration Analysis	LECO-H, Si-oil, Thermoelectric	
Constrained Fracture Mechanics	TBD	
Thermal Desorption Spectroscopy		1 mm thick Span TBD
Burst Test	Rupture Disk	TBD
Time Dependant Rate of Change of Crack Length	E1681	TBD
Residual Stress	E1426 (xrd), E837 (hole drilling)	

Materials

- Air Products, El Paso, and TransCanada recommend lower strength more ductile materials were a appropriate choice of starting materials.
 - More easily accommodate third party damage
 - higher strength steels are expected to have a service stress penalty (conservative allowable value) in the piping code to account for hydrogen sensitivity unknowns
 - X52
- NIST Workshop conclusion: consider X70 and below as well as >X70.

Initial Test Conditions

- Gas quality: 99.9999 (analyze post-test)
- Temperature:
 - -40 to 150°C (mechanical property testing),
 - -40 to 300°C (permeation testing)
- Pressure: ambient to 10ksi
- Will be evaluated after first year
- Impurities will be selected and introduced after consultation with gas and pipeline companies

Communication/Reporting

- Semi annual meetings to discuss programs and testing
 - 1st TDB
 - 2nd to coincide with 2nd NIST Workshop
- Bimonthly conference call

Round Robin Testing

- Testing will be coordinated by CTC
 - Procure stock material
 - Coordinate specimen machining
 - Track where samples were taken from stock
 - Coordinate and track all testing
 - Report findings
- Initial testing will include smooth tensile and permeation

RRT – Material Selection & Procurement

- Different options considered A106 Grade B, X42, X52
 - New material vs. material removed from service
 - Plate or pipe
 - Specimen extraction orientation
- Resolution
 - X42 or X52 (per DOE direction)
 - New material consistent w/current pipeline practice
 - Welded pipe large and thick enough for current and future extraction of specimens
 - Extraction orientations TBD, based on finalized specimen geometries
- CTC currently exploring suppliers and will procure pipe

Round Robin Tests

- Tensile testing
 - Participants: all
 - Conditions:
 - Temperature 25°C;
 - Environment -Air, He and H₂ (99.999%)
 - Samples 3 @ each condition
- Permeation testing
 - Participants: ORNL, NIST & ?
 - Samples 1 HAZ & 1 base material
 - Conditions:
 - Temperature 25°C to 300°C;
 - Environment H₂ (99.999%)
 - Pressures 1 to 10 ksi

Round Robin Schedule

ID 👩	Task Name	Start	Finish	Quarte 4th Quarter 1st Quarte 2nd Quart 3rd (
1	ASME/SRNL/DOE Workshop - Aiken, SC	Mon 9/24/07	Wed 9/26/07		uuoe ot
2	Material Procurement	Tue 9/11/07	Tue 11/6/07		
21	Specimen Machining	Tue 9/11/07	Mon 1/28/08	▼	
73	Specimen Distribution	Mon 1/28/08	Mon 1/28/08	-	
84	Tensile Testing	Tue 9/11/07	Mon 8/4/08	-	•
128	Permeation Testing	Tue 9/11/07	Mon 9/15/08		
164	Report Writing	Fri 4/18/08	Wed 6/25/08		
185	Present Results	Mon 1/7/08	Wed 9/10/08		

Fatigue Crack Growth Critical and Integral Fracture Toughness (Kic, Jic) and Tearing Modulus Permeation* LP & HP K Threshold Tensile Test (smooth & notched) Fatigue (AKic)
Growth Critical and Integral Fracture Toughness (Kic, Jic) and Tearing Modulus Permeation* LP & HP LP & LP LP LP LP K Threshold Tensile Test (smooth & notched)
Critical and Integral Fracture Toughness (K_{ic} , J_{ic}) and Tearing Modulus Permeation* LP & HP LP LP LP LP K Threshold \checkmark
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Toughness (K_{ic} , J_{ic}) and Tearing Modulus Permeation* LP & HP LP & LP LP LP K Threshold Tensile Test (smooth & notched)
Modulus Permeation* LP & HP LP LP LP K Threshold Tensile Test (smooth & notched)
Permeation* LP & HP LP & LP LP LP LP K Threshold
K Threshold Tensile Test (smooth &
Tensile Test (smooth & / / / / / / / / / / / / / / / / / /
(smooth & / / / / / / / / / / / / notched)
notched)
Taugue (Artin)
Surface
Kinetics
Hydrogen Concentration
Concentration
Analysis
Constrained
Fracture
Thermal
Desorption
Spectroscopy
Burst Test
Time Dependant
Rate of Change
of Crack Length
Residual Stress ✓ ✓ ✓

^{*} Low Pressure (LP) is defined as <2000 psi and High Pressure is defined as >2000 psi.

Questions?

Materials

API 5L (X42 and/or X52)

- steels are really represented by a strength requirement and composition can vary as long as strength minimums are maintained.
- Nb and V can be added at the discretion of the manufacturer; the sum of Nb+V+Ti cannot exceed 0.15, and the sum of Nb+V cannot exceed 0.06 unless the purchaser and manufacturer agree on another number.
- Si is not limited in these specs as it is considered a deoxidizer, but the steel will no doubt have anywhere from 0.1% Si up to maybe 1%.
- analysis for Cr, Ni, Mo, and Cu is required, but these have no limits except as required by a carbon equivalent (hardenability) calculation.

Weight %	X42	X52
Max C	0.28	0.28
Max Mn	1.30	1.40
Max P	0.030	0.03
Max S	0.030	0.030
Max Ti	0.04	0.04

PSL 1 for seamless pipe, for welded pipe % C decreases to 0.26